74LV165-Q100 8-bit parallel-in/serial-out shift register

Rev. 2 — 24 February 2014

Product data sheet

1. General description

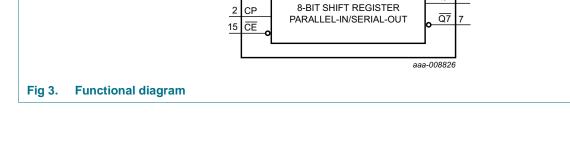
The 74LV165-Q100 is an 8-bit parallel-load or serial-in shift register with complementary serial outputs (Q7 and Q7) available from the last stage. When the parallel-load input (PL) is LOW, parallel data from the inputs D0 to D7 are loaded into the register asynchronously. When input \overline{PL} is HIGH, data enters the register serially at the input DS. It shifts one place to the right (Q0 \rightarrow Q1 \rightarrow Q2, etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the output Q7 to the input DS of the succeeding stage.

The clock input is a gate-<u>OR</u> structure which allows one input to be used as an active LOW clock enable input (CE) input. The pin assignment for the inputs CP and CE is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of the input \overrightarrow{CE} should only take place while CP HIGH for predictable <u>op</u>eration. Either the CP or the \overrightarrow{CE} should be HIGH before the LOW-to-HIGH transition of PL to prevent shifting the data when PL is activated.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

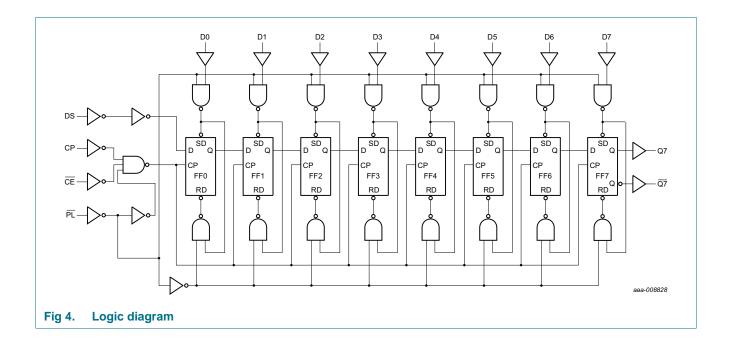
2. Features and benefits

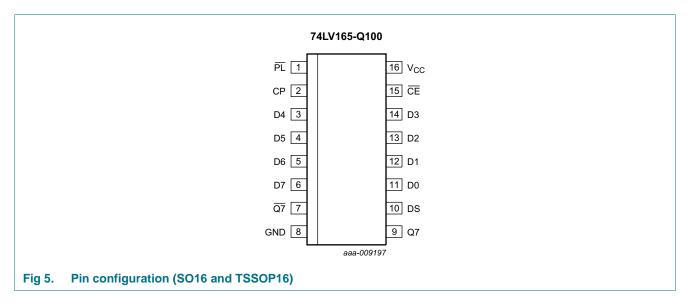
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide supply voltage range from 1.0 V to 5.5 V
- Synchronous parallel-to-serial applications
- Optimized for low voltage applications: 1.0 V to 3.6 V
- Synchronous serial input for easy expansion
- Latch-up performance exceeds 250 mA
- 5.5 V tolerant inputs/outputs
- Direct interface with TTL levels (2.7 V to 3.6 V)
- Power-down mode
- Complies with JEDEC standards:
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
 - ◆ JESD8-1A (4.5 V to 5.5 V)
- ESD protection:
 - MIL-STD-833, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)



3. Ordering information

Table 1. Orderin	ng information					
Type number Package						
	Temperature range	Name	Description	Version		
74LV165D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1		
74LV165PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1		


4. Functional diagram


74LV165-Q100

8-bit parallel-in/serial-out shift register

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
PL	1	parallel enable input (active LOW)
СР	2	clock input (LOW-to-HIGH edge-triggered)
Q7	7	complementary serial output from the last stage
GND	8	ground (0 V)
Q7	9	serial output from the last stage
DS	10	serial data input
D0 to D7	11, 12, 13, 14, 3, 4, 5, 6	parallel data inputs
CE	15	clock enable input (active LOW)
V _{CC}	16	positive supply voltage

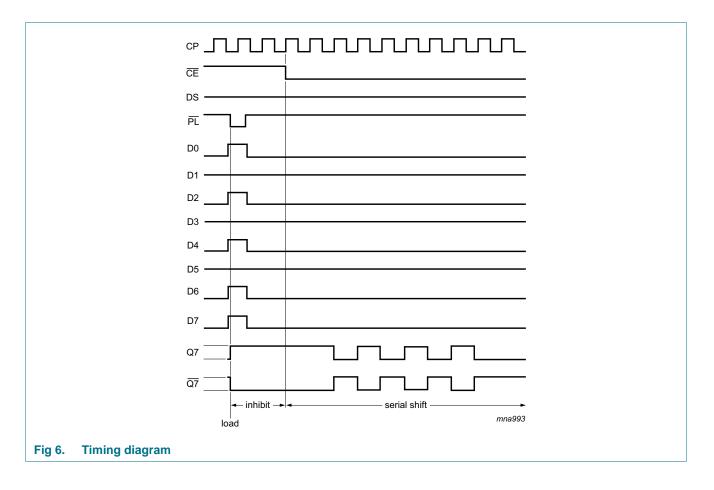
Functional description 6.

Table 3. Function table^[1]

Operating modes	Inputs				Qn regi	sters	Outpu	Output	
	PL	CE	СР	DS	D0 to D7	Q0	Q1 to Q6	Q7	Q7
parallel load	L	Х	Х	х	L	L	L to L	L	Н
	L	Х	Х	Х	Н	Н	H to H	Н	L
serial shift	Н	L	\uparrow	I	Х	L	q0 to q5	q6	q6
	Н	L	\uparrow	h	Х	Н	q0 to q5	q6	q6
hold "do nothing"	Н	Н	Х	Х	Х	q0	q1 to q6	q7	q7

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;


L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

q = state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

 \uparrow = LOW-to-HIGH clock transition.

74LV165 Q100 **Product data sheet**

5 of 19

Limiting values 7.

Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	-	20	mA
VI	input voltage		-0.5	+7	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0	-	±50	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	+50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C			
		SO16 package	[2] _	500	mW
		TSSOP16 package	[3] _	400	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Ptot derates linearly with 8 mW/K above 70 °C. [2]

P_{tot} derates linearly with 5.5 mW/K above 60 °C. [3]

Recommended operating conditions 8.

Recommended operating conditions Table 5.

Voltages are referenced to GND (ground = 0 V)

-						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.0	3.3	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+85	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.0 V to 2.0 V	0	-	500	ns/V
		V_{CC} = 2.0 V to 2.7 V	0	-	200	ns/V
		V_{CC} = 2.7 V to 3.6 V	0	-	100	ns/V
		$V_{CC} = 3.6 \text{ V to } 5.5 \text{ V}$	0	-	50	ns/V

8-bit parallel-in/serial-out shift register

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	Uni	
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
/ _{IH}	HIGH-level	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V
	input voltage	V_{CC} = 2.3 V to 2.7 V	1.4	-	-	1.4	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$0.7V_{CC}$	-	-	$0.7V_{CC}$	-	V
/ _{IL}	LOW-level	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V
	input voltage	V_{CC} = 2.3 V to 2.7 V	-	-	0.6	-	0.6	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	-	-	0.8	-	0.8	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	0.3V _{CC}	-	$0.3V_{CC}$	
/ _{ОН}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $I_O = -100 \ \mu A$						
	output voltage	V _{CC} = 1.2 V	-	1.2		-		
		$V_{CC} = 2.0 V$	1.8	2.0	-	1.8	-	V
		$V_{CC} = 2.7 V$	2.5	2.7	-	2.5	-	V
		$V_{CC} = 3.0 V$	2.8	3.0	-	2.8	-	V
		$V_{CC} = 4.5 V$	4.3	4.5	-	4.3	-	V
	standard outputs: $V_I = V_{IH}$ or V_{IL}							
		$V_{CC} = 3.0 \text{ V}; I_{O} = -6 \text{ mA}$	2.40	2.82	-	2.20	-	V
		V_{CC} = 4.5 V; I _O = -12 mA	3.60	4.20	-	3.50	-	V
/ _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $I_O = 100 \ \mu A$						
	output voltage	V _{CC} = 1.2 V	-	0	-	-	-	
		$V_{CC} = 2.0 V$	-	0	0.2	1.8	0.2	V
		$V_{CC} = 2.7 V$	-	0	0.2	2.5	0.2	V
		$V_{CC} = 3.0 V$	-	0	0.2	2.8	0.2	V
		$V_{CC} = 4.5 V$	-	0	0.2	4.3	0.2	V
		standard outputs: $V_I = V_{IH}$ or V_{IL}						
		$V_{CC} = 3.0 \text{ V}; I_{O} = 6 \text{ mA}$	-	0.25	0.40	-	0.50	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = 12 \text{ mA}$	-	0.35	0.55	-	0.65	V
I	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	±1	-	±1	μA
CC	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	20	-	160	μA
l _{CC}	additional supply current	$VI = V_{CC} - 0.6 V;$ $V_{CC} = 2.7 V \text{ to } 3.6 V$	-	-	500	-	850	μA
Ì	input capacitance		-	3.5	-			pF

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); for test circuit, see Figure 12

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Мах	
t _{pd}	propagation delay	CE, CP to Q7, Q7; see <u>Figure 7</u> and <u>Figure 8</u>	[2]				1		
		$V_{CC} = 1.2 V$		-	115	-	-	-	ns
		$V_{CC} = 2.0 V$		-	38	61	-	76	ns
		$V_{CC} = 2.7 V$		-	27	43	-	54	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	-	22	36	-	45	ns
		$V_{CC} = 3.3 \text{ V}; C_{L} = 15 \text{ pF}$		-	18	-	-	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	-	15	24	-	30	ns
		PL to Q7, Q7; see Figure 8							
		$V_{CC} = 1.2 V$		-	110	-	-	-	ns
		$V_{CC} = 2.0 V$		-	35	56	-	70	ns
		$V_{CC} = 2.7 V$		-	24	39	-	49	ns
		V_{CC} = 3.0 V to 3.6 V	[3]	-	20	33	-	41	ns
		$V_{CC} = 3.3 \text{ V}; C_{L} = 15 \text{ pF}$		-	18	-	-	-	ns
	V_{CC} = 4.5 V to 5.5 V	<u>[4]</u>	-	14	22	-	27	ns	
		D7 to Q7, $\overline{Q7}$; CL = 15 pF; see Figure 9							
		V _{CC} = 1.2 V		-	90	-	-	-	ns
		$V_{CC} = 2.0 V$		-	28	45	-	56	ns
		$V_{CC} = 2.7 V$		-	20	32	-	40	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	-	17	27	-	33	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	14	-	-	-	ns
		V_{CC} = 4.5 V to 5.5 V	<u>[4]</u>	-	11	18	-	22	ns
t _W	pulse width	CP input HIGH to LOW; see <u>Figure 7</u>							
		$V_{CC} = 2.0 V$		34	10	-	41	-	ns
		$V_{CC} = 2.7 V$		25	8	-	30	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	20	7	-	24	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	15	5	-	18	-	ns
		PL input LOW; see Figure 8							
		$V_{CC} = 2.0 V$		34	10	-	41	-	ns
		$V_{CC} = 2.7 V$		25	8	-	30	-	ns
		V_{CC} = 3.0 V to 3.6 V	[3]	20	7	-	24	-	ns
		V_{CC} = 4.5 V to 5.5 V	<u>[4]</u>	15	5	-	18	-	ns

8-bit parallel-in/serial-out shift register

Symbol	Parameter	Conditions		–40 °C to +85 °C			–40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	
t _{rec}	recovery time	PL to CP, CE; see Figure 8	I						
		V _{CC} = 1.2 V		-	40	-	-	-	ns
		$V_{CC} = 2.0 V$		24	15	-	30	-	ns
		$V_{CC} = 2.7 V$		18	11	-	23	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	17	10	-	21	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	12	7	-	15	-	ns
su	set-up time	DS to CP, CE; see Figure 10							
		$V_{CC} = 1.2 V$		-	-8	-	-	-	ns
		$V_{CC} = 2.0 V$		+22	-2	-	+26	-	ns
		$V_{CC} = 2.7 V$		+16	-1	-	+19	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	+13	-1	-	+15	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	9	0	-	10	-	ns
		\overline{CE} to CP, CP to \overline{CE} ; see Figure 10							
		V _{CC} = 1.2 V		-	20	-	-	-	ns
		$V_{CC} = 2.0 V$		22	7	-	26	-	ns
		$V_{CC} = 2.7 V$		16	5	-	19	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	13	4	-	15	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	9	3	-	10	-	ns
		Dn to PL; see <u>Figure 11</u>							
		V _{CC} = 1.2 V		-	25	-	-	-	ns
		$V_{CC} = 2.0 V$		22	8	-	26	-	ns
		$V_{CC} = 2.7 V$		16	6	-	19	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	13	5	-	15	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	9	4	-	10	-	ns
h	hold time	DS to CP, CE; Dn to PL; see Figure 10 and Figure 11							
		V _{CC} = 1.2 V		-	20	-	-	-	ns
		$V_{CC} = 2.0 V$		22	7	-	26	-	ns
		$V_{CC} = 2.7 V$		16	5	-	19	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	13	4	-	15	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	9	3	-	10	-	ns
		\overline{CE} to CP, CP to \overline{CE} ; see Figure 10							
		V _{CC} = 1.2 V		-	-30	-	-	-	ns
		$V_{CC} = 2.0 V$		+5	-8	-	+5	-	ns
		$V_{CC} = 2.7 V$		+5	-6	-	+5	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	+5	-5	-	+5	-	ns
		V_{CC} = 4.5 V to 5.5 V	[4]	+5	-4	-	+5	-	ns

Table 7. Dynamic characteristics ... continued

74LV165_Q100 Product data sheet

8-bit parallel-in/serial-out shift register

Symbol Parameter		Conditions		−40 °C to +85 °C			–40 °C to	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
f _{max} maximum frequency	see <u>Figure 7</u>	•		1					
	$V_{CC} = 2.0 V$		14	40	-	12	-	MHz	
	$V_{CC} = 2.7 V$		19	60	-	16	-	MHz	
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	24	65	-	20	-	MHz
		$V_{CC} = 3.3 \text{ V}; C_{L} = 15 \text{ pF}$		-	78	-	-	-	MHz
		V_{CC} = 4.5 V to 5.5 V	[4]	36	75	-	30	-	MHz
C _{PD}	power dissipation capacitance	$V_{\rm I}$ = GND to $V_{\rm CC};V_{\rm CC}$ = 3.3 V	[5]	-	35	-			pF

Table 7. Dynamic characteristics ... continued GND (around = 0 V): for test circuit, see Figure 12

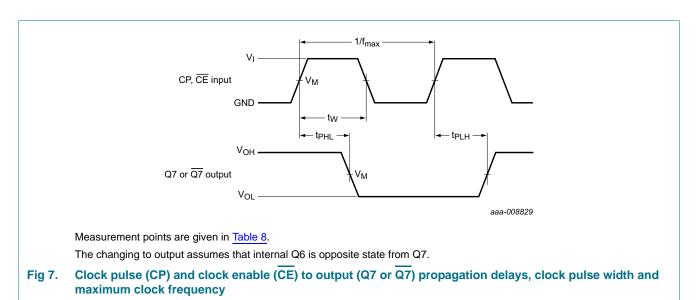
[1] Typical values are measured at $T_{amb} = 25$ °C.

[2] t_{pd} is the same as t_{PHL} and t_{PLH} .

[3] Typical values are measured at V_{CC} = 3.3 V.

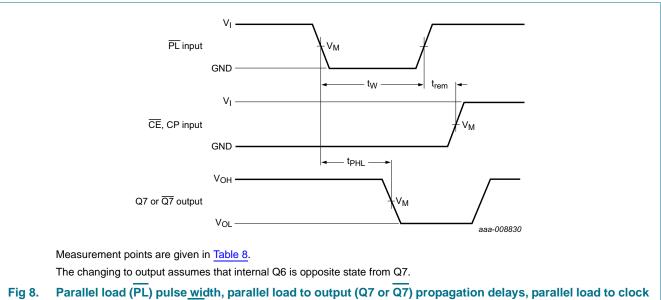
[4] Typical values are measured at V_{CC} = 5.0 V.

[5] C_{PD} is used to determine the dynamic power dissipation $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ (P_D in μ W), where: f_i = input frequency in MHz;

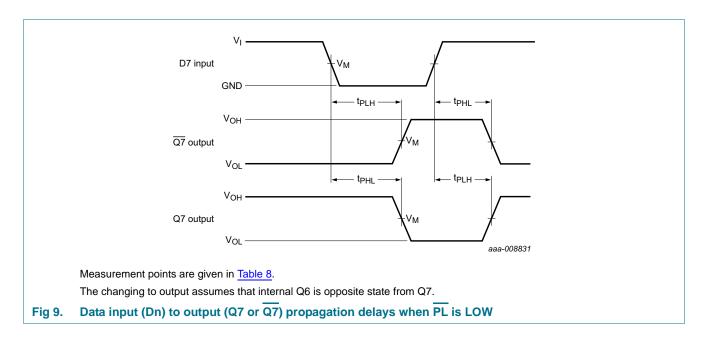

 f_o = output frequency in MHz;

 $\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs;

 C_L = output load capacitance in pF;

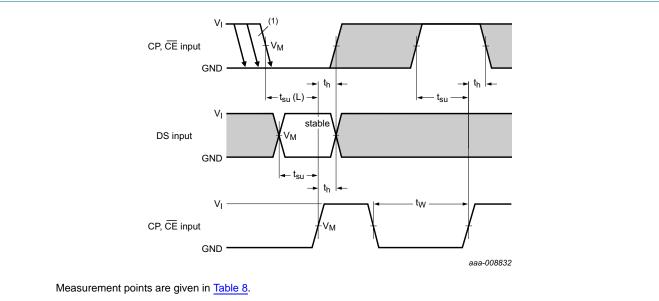

V_{CC} = supply voltage in V.

11. Waveforms

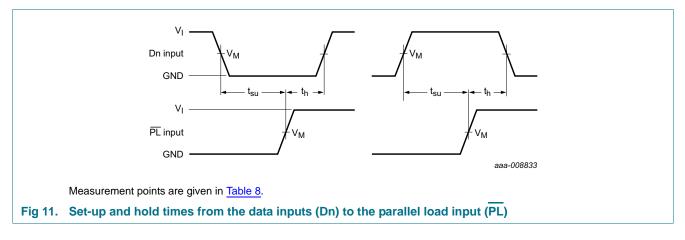


74LV165-Q100

8-bit parallel-in/serial-out shift register



(CP) and clock enable (CE) recovery time


74LV165-Q100

8-bit parallel-in/serial-out shift register

(1) CE may change only from HIGH-to-LOW while CP is LOW. The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig 10. Set-up and hold times

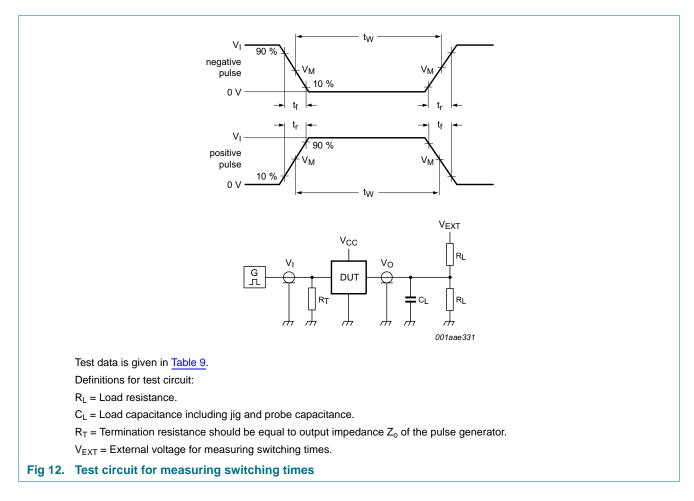


Table 8.Measurement points

Supply voltage	Input	Output
V _{cc}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
\geq 4.5 V	0.5V _{CC}	0.5V _{CC}

74LV165-Q100

8-bit parallel-in/serial-out shift register

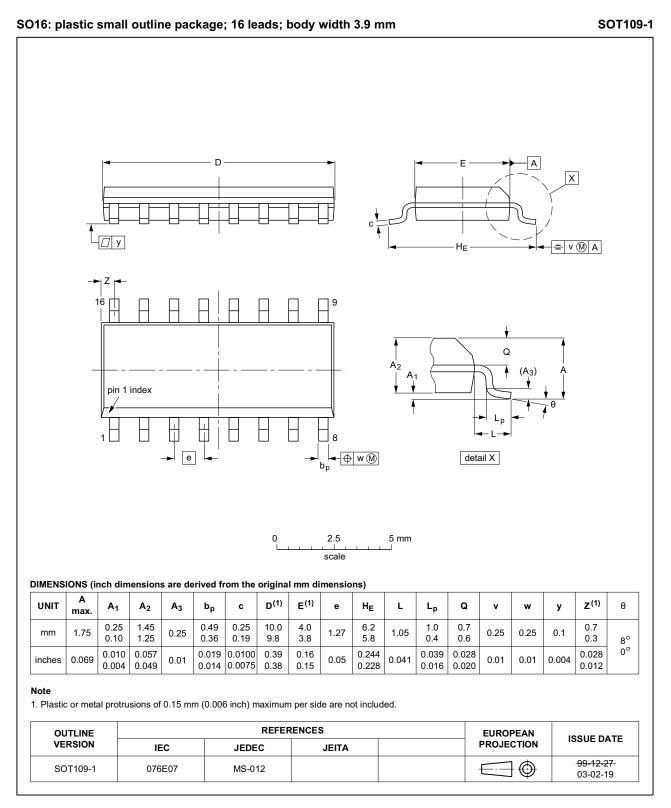


Table 9. Test data

Supply voltage	Input		Load	V _{EXT}	
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}
< 2.7 V	V _{CC}	2.5 ns	50 pF	1 kΩ	open
2.7 V to 3.6 V	2.7 V	2.5 ns	50 pF, 15 pF	1 kΩ	open
\geq 4.5 V	V _{CC}	2.5 ns	50 pF	1 kΩ	open

8-bit parallel-in/serial-out shift register

12. Package outline

Fig 13. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

74LV165 Q100

8-bit parallel-in/serial-out shift register

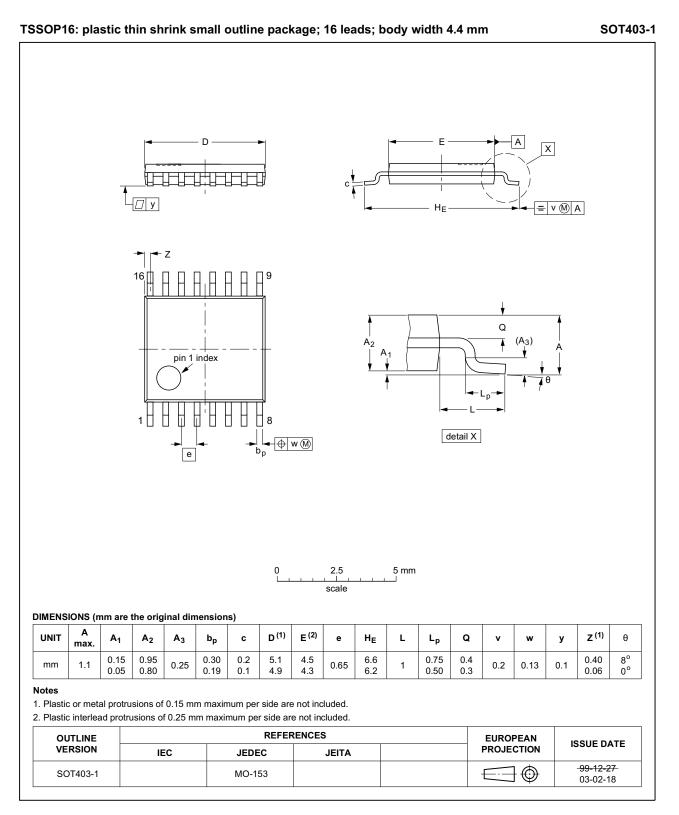


Fig 14. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

74LV165_Q100

8-bit parallel-in/serial-out shift register

13. Abbreviations

Table 10. Abb	previations
Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Release date	Data sheet status		
	Dala Sheel Slalus	Change notice	Supersedes
20140224	Product data sheet	-	74LV165_Q100 v.1
• Typo corrected in Table 2 "Pin description"			
20131111	Product data sheet	-	-
	20140224Typo corrected	20140224 Product data sheet • Typo corrected in Table 2 "Pin description"	20140224 Product data sheet - • Typo corrected in Table 2 "Pin description"

8-bit parallel-in/serial-out shift register

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

8-bit parallel-in/serial-out shift register

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

8-bit parallel-in/serial-out shift register

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values
8	Recommended operating conditions 6
9	Static characteristics 7
10	Dynamic characteristics 8
11	Waveforms 10
12	Package outline 14
13	Abbreviations 16
14	Revision history 16
15	Legal information 17
15.1	Data sheet status 17
15.2	Definitions 17
15.3	Disclaimers
15.4	Trademarks 18
16	Contact information 18
17	Contents 19

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia: 74LV165PW-Q100J 74LV165D-Q100J