DS34C87 CMOS Quad TRI-STATE® Differential Line Driver ### **General Description** The DS34C87 is a quad differential line driver designed for digital data transmission over balanced lines. The DS34C87 meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. This enables the construction of serial and terminal interfaces while maintaining minimal power consumption. The DS34C87 accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the individual drivers to power down without loading down the bus. The DS34C87 also includes special power up and down circuitry which will TRI-STATE the outputs during power up or down, preventing spurious glitches on its outputs. This device has separate enable circuitry for each pair of the four drivers. The DS34C87 is pin compatible to the DS3487. All inputs are protected against damage due to electrostatic discharge by diodes to V_{CC} and ground. #### **Features** - TTL input compatible - Typical propagation delays: 8 ns - Typical output skew: 0.5 ns - Outputs won't load line when V_{CC} = 0V - Meets the requirements of EIA standard RS-422 - Operation from single 5V supply - TRI-STATE outputs for connection to system buses - Low quiescent current # **Connection and Logic Diagrams** Top View Order Number DS34C87J, DS34C87N or DS34C87M See NS Package Number J16A, M16A or N16A #### **Truth Table** | Input | Control
Input | Non-Inverting
Output | Inverting
Output | | |-------------------|------------------|-------------------------|---------------------|--| | H H
L H
X L | | Н | L | | | | | L | н | | | | | Z | Z | | L = Low logic state X = Irrelevant H = High logic state Z = TRI-STATE (high impedance) For complete specifications see the Interface Databook. ### Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications. | Supply Voltage (V _{CC}) | -0.5 to 7.0V | |--|--------------------------------| | DC Voltage (V _{IN}) | -1.5 to V _{CC} + 1.5V | | DC Output Voltage (VOUT) | -0.5 to 7V | | Clamp Diode Current (I _{IK} , I _{OK}) | ± 20 mA | | DC Output Current, per pin (IOUT) | ± 150 mA | | DC V _{CC} or GND Current (I _{CC}) | ±150 mA | | Storage Temperature Range (TSTG) | -65°C to +150°C | | Power Dissipation (Note 3) (PD) | 500 mW | | Lead Temperature (TL) (Soldering 4 sec | 260°C | | | | ## **Operating Conditions** | | Min | Max | Units | |---|------|------|-------| | Supply Voltage (VCC) | 4.50 | 5.50 | V | | DC Input or Output Voltage (VIN, VOUT) | 0 | Vcc | ٧ | | Operating Temperature Range (T _A) | -40 | +85 | ٩C | | Input Rise or Fall Times (t _r , t _f) | | 500 | ns | # DC Electrical Characteristics $V_{CC} = 5V \pm 10\%$ (unless otherwise specified) (Note 4) | Symbol | Parameter | Conditions | | Parameter Conditions M | | Min | Тур | Max | Units | |----------------------------------|--------------------------------------|---|-----------------------------------|------------------------|------------|-------------|----------|-----|-------| | V _{IH} | High Level Input
Voltage | | | 2.0 | | | V | | | | V _{IL} | Low Level Input
Voltage | | | | | 0.8 | ٧ | | | | V _{OH} | High Level Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OUT} = -20 \text{ mA}$ | | 2.5 | | | ٧ | | | | V _{OL} | Low Level Output
Voltage | V _{IN} = V _{IH} or V _{IL} ,
I _{OUT} = 48 mA | | | | 0.5 | ٧ | | | | V _T | Differential Output
Voltage | R _L = 100 Ω
(Note 5) | | 2.0 | | | ٧ | | | | V _T - ∇ _T | Difference In
Differential Output | R _L = 100 Ω
(Note 5) | | | | 0.4 | ٧ | | | | Vos | Common Mode
Output Voltage | R _L = 100 Ω
(Note 5) | | | | 3.0 | ٧ | | | | v _{os} -⊽ _{os} | Difference In
Common Mode Output | R _L = 100 Ω
(Note 5) | | | | 0.4 | ٧ | | | | ĮIN | Input Current | V _{IN} = V _{CC} , GND, V _{IH} , or V _{IL} | | 0 0 | | ±1.0 | μΑ | | | | loc | Quiescent Supply
Current | I _{OUT} = 0 μA,
V _{IN} = V _{CC} or GND
V _{IN} = 2.4V or 0.5V (Note 6) | | | 200
0.8 | | μA
mA | | | | loz | TRI-STATE Output
Leakage Current | V _{OUT} = V _{CC} or GND
Control = V _{IL} | | | ±0.5 | ±5.0 | μΑ | | | | Isc | Output Short
Circuit Current | V _{IN} = V _{CC} or GND
(Note 7) | | -30 | | -150 | mA | | | | OFF | Output Leakage Current
Power Off | V _{CC} = 0V | $V_{OUT} = 6V$ $V_{OUT} = -0.25V$ | | | 100
-100 | μA
μA | | | Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Note 2: Unless otherwise specified, all voltages are referenced to ground. All currents into device pins are positive; all currents out of device pins are negative. Note 3: Power Dissipation temperature derating-plastic "N" package: -12 mW/°C from 65°C to 85°C. ceramic "J" package: -12 mW/°C from 100°C to 125°C. Note 4: Unless otherwise specified, min/max limits apply across the -40°C to 85°C temperature range. All typicals are given for V_{CC} = 5V and T_A = 25°C. Note 5: See EIA Specification RS-422 for exact test conditions. Note 6: Measured per input. All other inputs at VCC or GND. Note 7: Only one output at a time should be shorted. # Switching Characteristics $V_{CC} = 5V \pm 10\%$, $t_f = t_f = 6$ ns (Figures 1, 2, 3, and 4) (Note 4) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |-------------------------------------|--|------------|-----|-----|-----|-------| | t _{PLH} , t _{PHL} | Propagation Delay input to Output | S1 Open | | 8 | | ns | | Skew | (Note 8) | S1 Open | | 0.5 | | ns | | t _{TLH} , t _{THL} | Differential Output Rise
And Fall Times | S1 Open | | 8 | | ns | | t _{PZH} | Output Enable Time | S1 Closed | | 13 | | ns | | tpzL | Output Enable Time | S1 Closed | | 15 | | ns | | t _{PHZ} | Output Disable Time (Note 9) | S1 Closed | | 9 | | ns | | t _{PLZ} | Output Disable Time (Note 9) | S1 Closed | | 10 | | ns | | C _{PD} | Power Dissipation
Capacitance (Note 10) | | | 100 | | pF | | CIN | Input Capacitance | | | 10 | | pF | Note 8: Skew is defined as the difference in propagation delays between complementary outputs at the 50% point. Note 9: Output disable time is the delay from ENABLE or ENABLE being switched to the output transistors turning off. The actual disable times are less than indicated due to the delay added by the RC time constant of the load. Note 10: Cpp determines the no load dynamic power consumption, PD = Cpp V2CC f + ICC VCC, and the no load dynamic current consumption, IS = Cpp VCC f + ICC. # **AC Test Circuit and Switching Time Waveforms** Note: C1 = C2 = C3 = 40 pF, R1 = R2 = 50Ω , R3 = 500Ω FIGURE 1. AC Test Circuit # AC Test Circuit and Switching Time Waveforms (Continued) FIGURE 2. Propagation Delays FIGURE 3. Enable and Disable Times FIGURE 4. Differential Rise and Fall Times # **Typical Applications** # Two-Wire Balanced System, RS-422 ENABLE O DATA O 1/4 DS34C87 DATA O UTPUT # Important statement: Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information. Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage. Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields. Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.