

## FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM1660文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

#### **Features**

- Excellent insertion loss: 0.85dB @2.7GHz
- P0.1dB @ 36dBm
- Multi-Band operation 700MHz to 2700MHz
- RFFE 2.0 control interface
- Compact 2.4mm x 2.4mm in QFN-20 package
- No DC blocking capacitors required ( unless external DC is applied to the RF ports )

#### **Applications**

- 2G/3G/4G antenna transmitting and receiving
- Cellular modems and USB Devices

#### Description

The FM1660 is a low loss, high isolation high power SP10T switch for antenna transmitting and receiving. The FM1660 is compatible with MIPI 2.0 control, which is a key requirement for many cellular transceivers. This part is packaged in a compact 2.4mm x 2.4mm, 20-pin, QFN package which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

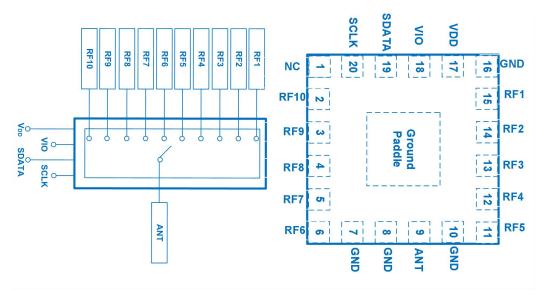



Figure 1. FM1660 Functional Block Diagram and Pinout(Top View)



## FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM1660 文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

## **Application Circuit**

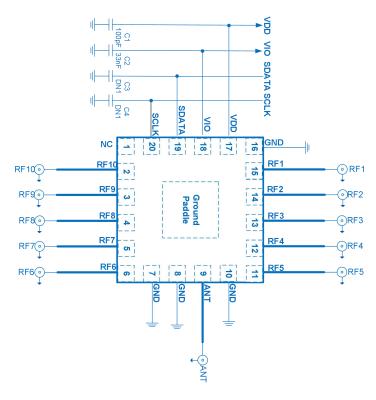



Figure 2. FM1660 Evaluation Board Schematic

**Table 1 Pin Descriptions** 

| Pin No.       | Name | Description  | Pin No.         | Name  | Description             |  |  |
|---------------|------|--------------|-----------------|-------|-------------------------|--|--|
| 1             | NC   | Not Connect  | 11              | RF5   | RF port5                |  |  |
| 2             | RF10 | RF port10    | 12              | RF4   | RF port4                |  |  |
| 3             | RF9  | RF port 9    | 13              | RF3   | RF port3                |  |  |
| 4             | RF8  | RF port8     | 14              | RF2   | RF port2                |  |  |
| 5             | RF7  | RF port7     | 15              | RF1   | RF port1                |  |  |
| 6             | RF6  | RF port6     | 16              | GND   | Ground                  |  |  |
| 7             | GND  | Ground       | Ground 17 VDD P |       | Power supply            |  |  |
| 8             | GND  | Ground       | 18              | VIO   | Supply voltage for MIPI |  |  |
| 9             | ANT  | Antenna port | 19              | SDATA | MIPI data input/output  |  |  |
| 10            | GND  | Ground       | 20              | SCLK  | MIPI clock              |  |  |
| Ground Paddle | GND  | Ground       |                 |       |                         |  |  |

**Notice:** Bottom ground paddles must be connected to ground.



## FINE MADE MICROELECTRONICS GROUP CO., LTD.

**FM1660**文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

#### **Truth Table**

**Table 2 Truth Table** 

| State | Mode    | Register_0 |    |    |    |    |    |    |    |  |
|-------|---------|------------|----|----|----|----|----|----|----|--|
|       |         | D7         | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| 1     | ISO     | x          | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
| 2     | RF1 on  | x          | 0  | 0  | 0  | 0  | 0  | 1  | 0  |  |
| 3     | RF2 on  | x          | 0  | 0  | 0  | 1  | 0  | 1  | 0  |  |
| 4     | RF3 on  | x          | 0  | 0  | 0  | 1  | 1  | 1  | 0  |  |
| 5     | RF4 on  | X          | 0  | 0  | 0  | 1  | 0  | 1  | 1  |  |
| 6     | RF5 on  | x          | 0  | 0  | 0  | 0  | 0  | 0  | 1  |  |
| 7     | RF6 on  | x          | 0  | 0  | 0  | 1  | 0  | 0  | 1  |  |
| 8     | RF7 on  | x          | 0  | 0  | 0  | 0  | 1  | 1  | 0  |  |
| 9     | RF8 on  | х          | 0  | 0  | 0  | 0  | 1  | 0  | 0  |  |
| 10    | RF9 on  | х          | 0  | 0  | 0  | 1  | 1  | 0  | 0  |  |
| 11    | RF10 on | х          | 0  | 0  | 0  | 1  | 0  | 0  | 0  |  |

## **Absolute Maximum Ratings**

**Table 3 Absolute Maximum ratings** 

| Parameters                            | Symbol  | Minimum | Maximum | Units |
|---------------------------------------|---------|---------|---------|-------|
| Supply voltage                        | VDD     | +2.5    | +4.8    | V     |
| Supply voltage for MIPI               | Vio     | +1.4    | +2.0    | V     |
| MIPI Control voltage<br>(SDATA, SCLK) | VCTL    | 0       | +2.0    | V     |
| RF input power (RF1 to RF10)          | PIN     |         | +36     | dBm   |
| Operating temperature                 | ТОР     | -20     | +85     | c     |
| Storage temperature                   | TSTG    | -40     | +125    | င     |
| Human body model<br>(HBM), Class 1C   | ESD_HBM |         | 1000    | V     |
| Charged device model (CDM), Class III | ESD_CDM |         | 1000    | V     |

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device



# FINE MADE MICROELECTRONICS GROUP CO., LTD.

**FM1660**文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

## **Electrical Specifications**

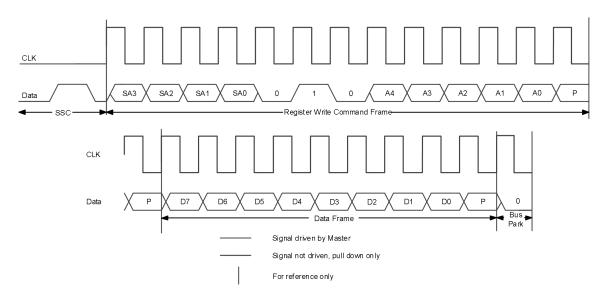
**Table 4 Electrical Specifications** 

| Parameter                                                         | Symbol          | Test Condition         | Min      | Typical | Max  | Units |
|-------------------------------------------------------------------|-----------------|------------------------|----------|---------|------|-------|
| DC Specifications                                                 |                 |                        |          |         |      |       |
| Supply voltage                                                    | VDD             |                        | 2.5      | 2.8     | 4.2  | V     |
| Supply current                                                    | IDD             |                        |          | 80      | 100  | uA    |
| VIO supply voltage                                                | VIO             |                        | 1.65     | 1.8     | 1.95 | V     |
| VIO Supply current                                                | IIO             |                        |          | 5       | 10   | uA    |
| SDATA, SCLK control voltage:<br>High                              | VCTL_H          |                        | 0.8* VIO | VIO     | 1.95 | V     |
| Low                                                               | VCTL_L          |                        | 0        | 0       | 0.3  | V     |
|                                                                   |                 | From 50% of final VCTL |          |         |      |       |
| Switching Speed                                                   |                 | voltage to 10%/90% of  |          | 2       | 5    | uS    |
|                                                                   |                 | final RF power         |          |         |      |       |
| RF Specifications                                                 |                 |                        |          |         |      |       |
| Insertion loss (ANT pin to                                        |                 | 0.1 to 1.0 GHz         |          | 0.55    |      |       |
| RF1/2/3/4/5/6/7/8/9/10 pins)                                      | IL              | 1.0 to 2.0 GHz         |          | 0.70    |      | dB    |
| iti 1/2/3/4/3/0/7/0/3/10 pilis)                                   |                 | 2.0 to 2.7 GHz         |          | 0.85    |      |       |
| Isolation (ANT pin to                                             |                 | 0.1 to 1.0 GHz         | 30       | 35      |      |       |
| RF1/2/3/4/5/6/7/8/9/10 pins)                                      | Iso             | 1.0 to 2.0 GHz         | 20       | 25      |      | dB    |
| KF 1/2/3/4/3/6/7/6/3/10 pills)                                    |                 | 2.0 to 2.7 GHz         | 19       | 21      |      |       |
| 0.1 dB Compression Point (ANT pin to RF1/2/3/4/5/6/7/8/9/10 pins) | P0.1dB          | 0.7 GHz to 3.0 GHz     |          | +36     |      | dBm   |
|                                                                   |                 | F0=900MHz @ 35dBm      |          | -50     | -45  |       |
| 2nd Harmonic                                                      | 2F0             | F0=900MHz @ 26dBm      |          | -65     | -60  |       |
|                                                                   | <b></b> -       | F0=900MHz @ 35dBm      |          | -45     | -40  | dBm   |
| 3rd Harmonic                                                      | 3F <sub>0</sub> | F0=900MHz @ 26dBm      |          | -70     | -65  |       |



## FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM1660文件编号: S&CIC2061)


High power SP10T Switch with MIPI for TX/RX

#### **MIPI Read and Write Timing**

MIPI supports the following Command Sequences:

- · Register Write
- Register\_0 Write
- · Register Read

Figures 3 and 4 provide the timing diagrams for register write commands and read commands, respectively. Figure 5 shows the Register 0 Write Command Sequence. Refer to the MIPI Alliance Specification for RF Front-End Control Interface (RFFE), v1.10 (26 July 2011) for additional information on MIPI USID programming sequences and MIPI bus specifications.



**Figure 4 Register Write Command Sequence** 

Page 5



## FINE MADE MICROELECTRONICS GROUP CO., LTD.

**FM1660**文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

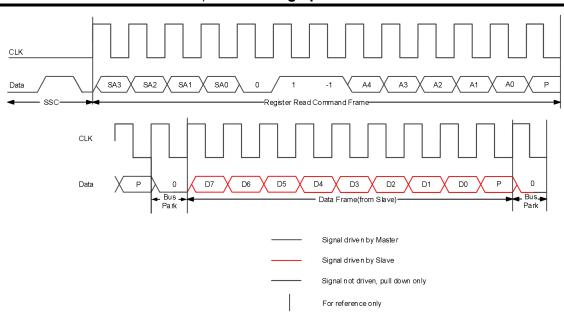



Figure 5 Register Read Command Sequence

In the timing figures, SA[3:0] is slave address. A[4:0] is register address. D[7:0] is data. "P" is odd parity bit.



## FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM1660 文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

## **Register 0 Write Command Sequence**

Figure shows the Register 0 Write Command Sequence. The Command Sequence starts with an SSC, followed by the Register 0 Write Command Frame containing the Slave address, a logic one, and a seven bit word to be written to Register 0. The Command Sequence ends with a Bus Park Cycle.

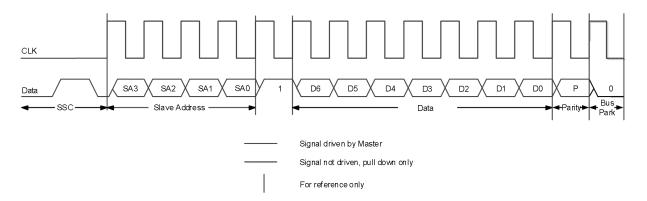



Figure 6 Register 0 Write Command Sequence



# FINE MADE MICROELECTRONICS GROUP CO., LTD.

**FM1660**文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

## **Register definition**

#### Table 5 Register definition table

| Register Address | Register Name | Data Bits | R/W | Function       | Description                                    | Default | BROADC AST_ID | Trigger |
|------------------|---------------|-----------|-----|----------------|------------------------------------------------|---------|---------------|---------|
| -                |               |           |     |                |                                                |         | support       | support |
| 0x00             | REGISTER_0    | 7:0       | R/W | RF Control     | Register_0 truth Table: Table 2                | 0x00    | No            | Yes     |
| 0x001B           | GROUP_SID     | 7:4       | R   | RESERVED       |                                                | 0x0     | No            | No      |
|                  |               | 3:0       | R/W | GSID           | Group Slave ID                                 | 0x0     | No            | No      |
| 0x001C           | PM_TRIG       | 7:6       | R/W | PWR_MODE       | 00: Normal Operation (ACTIVE)                  | 0b10    | Yes           | No      |
|                  |               |           |     |                | 01: Reset all registers to default settings    |         |               |         |
|                  |               |           |     |                | (STARTUP)                                      |         |               |         |
|                  |               |           |     |                | 10: Low power (LOW POWER)                      |         |               |         |
|                  |               |           |     |                | 11: Reserved                                   |         |               |         |
|                  |               |           |     |                | Note: Write PWR_MODE=2'h1 will reset all       |         |               |         |
|                  |               |           |     |                | register, and puts the device into STARTUP     |         |               |         |
|                  |               |           |     |                | state.                                         |         |               |         |
|                  |               | 5         | R/W | Trigger_Mask_2 | If this bit is set, trigger 2 is disabled      | 0       | No            | No      |
|                  |               | 4         | R/W | Trigger_Mask_1 | If this bit is set, trigger 1 is disabled      | 0       | No            | No      |
|                  |               | 3         | R/W | Trigger_Mask_0 | If this bit is set, trigger 0 is disabled      | 0       | No            | No      |
|                  |               |           |     |                | Note: When all triggers are disabled,          |         |               |         |
|                  |               |           |     |                | writing to a register that is associated with  |         |               |         |
|                  |               |           |     |                | trigger 0, 1, or 2, causes the data to go      |         |               |         |
|                  |               |           |     |                | directly to the destination register.          |         |               |         |
|                  |               | 2         | w   | Trigger_2      | A write of a one to this bit loads trigger     | 0       | Yes           | No      |
|                  |               |           |     | 00 _           | 2's registers                                  |         |               |         |
|                  |               | 1         | w   | Trigger_1      | A write of a one to this bit loads trigger 1's | 0       | Yes           | No      |
|                  |               |           |     | 33             | registers                                      |         |               |         |
|                  |               | 0         | w   | Trigger_0      | A write of a one to this bit loads trigger 0's | 0       | Yes           | No      |
|                  |               |           |     |                | registers                                      |         |               |         |
|                  |               |           |     |                | Note: Trigger processed immediately then       |         |               |         |
|                  |               |           |     |                | cleared. Trigger 0, 1, and 2 will always read  |         |               |         |
|                  |               |           |     |                | as 0.                                          |         |               |         |
| 0x001D           | PRODUCT_ID    | 7:0       | R   | PRODUCT_ID     | Product Number                                 | 0x45    | No            | No      |
| 0x001E           | MANUFACTU     | 7:0       | R   | MANUFACTUR     | Lower eight bits of MIPI registered            | 0x78    | No            | No      |
|                  | RER_ID        |           |     | ER_ID[7:0]     | Manufacturer ID                                |         |               |         |
|                  |               | 7:4       | R   | MANUFACTUR     | Upper two bits of MIPI registered              | 0x4     | No            | No      |
| 0x001F           | MAN_USID      |           |     | ER_ID[9:8]     | Manufacturer ID                                |         |               |         |
|                  |               | 3:0       | R/W | USID           | USID of the device.                            | 0xA     | No            | No      |

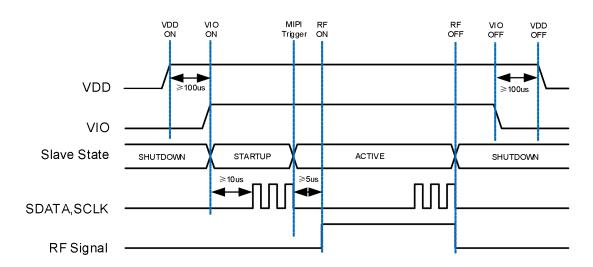


## FINE MADE MICROELECTRONICS GROUP CO., LTD.

**FM1660**文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

#### **Power ON and OFF sequence**


Here is the recommendation about power-on/off sequence in order to avoid damaging the device.

#### **Power ON**

- 1) Apply voltage supply VDD
- 2) Apply logic supply VIO
- 3) Wait 10µs or greater and then apply MIPI bus signals SCLK and SDATA
- 4) Wait 5µs or greater after MIPI bus goes idle and then apply the RF Signal

#### **Power OFF**

- 1) Remove the RF Signal
- 2) Remove MIPI bus SCLK and SDATA
- 3) Remove logic supply VIO
- 4) Remove voltage supply VDD



**Note:** VIO can be applied to the device before VDD or removed after VDD.

It is important to wait 10 $\mu$ s after VIO & VDD are applied before sending SDATA to ensure correction data transmission. The minimum time between a power up and power down sequence (and vice versa) is  $\geq$  100 $\mu$ s.



## FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM1660文件编号: S&CIC2061)

High power SP10T Switch with MIPI for TX/RX

#### **Reflow Chart**

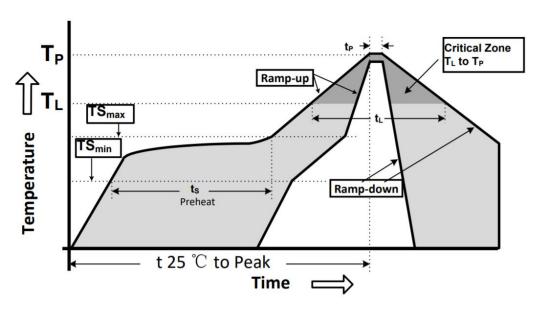



Figure 5 Recommended Lead-Free Reflow Profile

**Table 6 Reflow Chart Parameters** 

| Reflow Profile                                               | Parameter         |  |  |  |  |
|--------------------------------------------------------------|-------------------|--|--|--|--|
| Preheat Temperature(TS <sub>MIN</sub> to TS <sub>MAX</sub> ) | 150℃ to 200℃      |  |  |  |  |
| Preheat Time(t <sub>s</sub> )                                | 60 to 180 Seconds |  |  |  |  |
| Ramp-Up Rate(TS <sub>MAX</sub> to T <sub>P</sub> )           | 3℃/s MAX          |  |  |  |  |
| Time Above T <sub>L</sub> 217℃(t <sub>L</sub> )              | 60 to 150 Seconds |  |  |  |  |
| Peak Temperature ( T <sub>P</sub> )                          | 260℃              |  |  |  |  |
| Time within 5℃ of Peak Temperature(t <sub>P</sub> )          | 20 to 40 Seconds  |  |  |  |  |
| Ramp-Down Rate(TS <sub>MAX</sub> to T <sub>P</sub> )         | 6℃/s MAX          |  |  |  |  |
| Time for 25℃ to Peak Temperature(t <sub>25-TP</sub> )        | 8 Minutes MAX     |  |  |  |  |

### **ESD Sensitivity**

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be applied when devices are operating.

### **RoHS Compliant**

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and is considered RoHS compliant.