TLE4966-3K High Sensitivity Automotive Hall Switch with direction detection # Datasheet Rev.1.0, 2010-09-20 # Sense & Control Edition 2010-09-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. #### **Legal Disclaimer** The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. #### Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. | Revisio | Revision History: 2010-09-20, Rev.1.0 | | | | | | | | |---------|--|--|--|--|--|--|--|--| | Previou | s Revision: | | | | | | | | | Page | Subjects (major changes since last revision) | #### **Trademarks of Infineon Technologies AG** ABM™, BlueMoon™, CONVERGATE™, COSIC™, C166™, FALC™, GEMINAX™, GOLDMOS™, ISAC™, OMNITUNE™, OMNIVIA™, PROSOC™, SEROCCO™, SICOFI™, SIEGET™, SMARTI™, SMINT™, SOCRATES™, VINAX™, VINETIC™, VOIPRO™, X-GOLD™, XMM™, X-PMU™, XWAY™ #### Other Trademarks Microsoft[®], Visio[®], Windows[®], Windows Vista[®], Visual Studio[®], Win32[®] of Microsoft Corporation. Linux[®] of Linus Torvalds. FrameMaker[®], Adobe[®] Reader[™], Adobe Audition[®] of Adobe Systems Incorporated. APOXI[®], COMNEON™ of Comneon GmbH & Co. OHG. PrimeCell®, RealView®, ARM®, ARM® Developer Suite™ (ADS), Multi-ICE™, ARM1176JZ-S™, CoreSight™, Embedded Trace Macrocell™ (ETM), Thumb®, ETM9™, AMBA™, ARM7™, ARM9™, ARM7TDMI-S™, ARM926EJ-S™ of ARM Limited. OakDSPCore®, TeakLite® DSP Core, OCEM[®] of ParthusCeva Inc. IndoorGPS™, GL-20000™, GL-LN-22™ of Global Locate. mipi™ of MIPI Alliance. CAT-iq[™] of DECT Forum. MIPS[™], MIPS II[™], 24KEc[™], MIPS32[®], 24KEc[™] of MIPS Technologies, Inc. Texas Instruments[®], PowerPAD™, C62x™, C55x™, VLYNQ™, Telogy Software™, TMS320C62x™, Code Composer Studio™, SSI™ of Texas Instruments Incorporated. Bluetooth® of Bluetooth SIG, Inc. IrDA® of the Infrared Data Association. Java™, SunOS™, Solaris™ of Sun Microsystems, Inc. Philips®, I2C-Bus® of Koninklijke Philips Electronics N.V. Epson® of Seiko Epson Corporation. Seiko® of Kabushiki Kaisha Hattori Seiko Corporation. Panasonic® of Matsushita Electric Industrial Co., Ltd. Murata® of Murata Manufacturing Company. Taiyo Yuden™ of Taiyo Yuden Co., Ltd. TDK® of TDK Electronics Company, Ltd. Motorola® of Motorola, Inc. National Semiconductor[®], MICROWIRE[™] of National Semiconductor Corporation. IEEE[®] of The Institute of Electrical and Electronics Engineers, Inc. Samsung[®], OneNAND[®], UtRAM[®] of Samsung Corporation. Toshiba[®] of Toshiba Corporation. Dallas Semiconductor[®], 1-Wire[®] of Dallas Semiconductor Corp. ISO[®] of the International Organization for Standardization. IEC™ of the International Engineering Consortium. EMV™ of EMVCo, LLC. Zetex® of Zetex Semiconductors. Microtec® of Microtec Research, Inc. Verilog® of Cadence Design Systems, Inc. ANSI® of the American National Standards Institute, Inc. WindRiver® and VxWorks® of Wind River Systems, Inc. Nucleus™ of Mentor Graphics Corporation. OmniVision® of OmniVision Technologies, Inc. Sharp® of Sharp Corporation. Symbian OS® of Symbian Software Ltd. Openwave® of Openwave Systems, Inc. Maxim® of Maxim Integrated Products, Inc. Spansion[®] of Spansion LLC. Micron[®], CellularRAM[®] of Micron Technology, Inc. RFMD® of RF Micro Devices, Inc. EPCOS® of EPCOS AG. UNIX® of The Open Group. Tektronix® of Tektronix, Inc. Intel® of Intel Corporation. Qimonda® of Qimonda AG. 1GOneNAND® of Samsung Corporation. HyperTerminal® of Hilgraeve, Inc. MATLAB® of The MathWorks, Inc. Red Hat® of Red Hat, Inc. Palladium® of Cadence Design Systems, Inc. SIRIUS Satellite Radio® of SIRIUS Satellite Radio Inc. TOKO® of TOKO Inc. The information in this document is subject to change without notice. Last Trademarks Update 2008-11-17 Datasheet 3 Rev.1.0, 2010-09-20 | | Trademarks of Infineon Technologies AG | |-------------------------------|---| | 1
1.1
1.2
1.3 | Overview 5 Features 5 Functional Description 5 Pin Configuration (top view) 6 | | 2
2.1
2.2
2.3 | General 7 Block Diagram 7 Circuit Description 7 Application Circuit 8 | | 3 | Maximum Ratings 8 | | 4 | Operating Range 9 | | 5 | Electrical and Magnetic Parameters 10 Field Direction Definition 11 | | 6 | Timing Diagrams for the Speed and Direction Output | | 7
7.1
7.2
7.3 | Package Information13Package Marking13Distance between Chip and Package Surface13Package Outlines13 | | | PCB Footprint for PG-TSOP-6-6-5 | # High Sensitivity Automotive Hall Switch with direction detection TLE4966-3K #### 1 Overview #### 1.1 Features - 2.7V to 24V supply voltage operation - · Operation from unregulated power supply - High sensitivity and high stability of the magnetic switching points - High resistance to mechanical stress by Active Error Compensation - Reverse battery protection (-18V) - Superior temperature stability - Peak temperatures up to 195°C - Low jitter (typ. 1μs) - Digital output signals - · Excellent matching of the 2 Hall probes - Hall plate distance 1.45mm - · Speed and direction output signal - SMD package PG-TSOP-6-6-5 # Infineon TSOP6-3 #### 1.2 Functional Description The TLE4966-3K is an integrated circuit dual Hall-effect sensor designed specifically for highly accurate applications which use a rotating pole wheel. Precise magnetic switching points and high temperature stability are achieved by active compensation circuits and chopper techniques on chip. The sensor provides a speed output at Q2 with the status (high or low) corresponding to the magnetic field value. For positive magnetic fields (south pole) exceeding the threshold B_{OP} the output is low, whereas for negative magnetic fields (north pole) lower than B_{RP} the output switches to high. The output Q1 can be either high or low depending on the direction of rotation of the pole wheel. This direction information is calculated internally. | Product Name | Product Type | Ordering Code | Package | | |--------------|--------------------|---------------|---------------|--| | TLE4966-3K | Double Hall Switch | SP000835522 | PG-TSOP-6-6-5 | | Overview # 1.3 Pin Configuration (top view) Figure 1 Pin Definition and Center of Sensitive Area Table 1 Pin Definitions and Functions | Pin No. | Symbol | Function | |---------|----------|-------------------------------| | 1 | Q2 | Speed | | 2 | GND | Recommended connection to GND | | 3 | Q1 | Direction | | 4 | V_{DD} | Supply voltage | | 5 | GND | Recommended connection to GND | | 6 | GND | Ground | General ## 2 General ### 2.1 Block Diagram Figure 2 Block Diagram ## 2.2 Circuit Description The chopped Dual Hall Switch comprises two Hall probes, bias generator, compensation circuits, oscillator, and output transistors. The bias generator provides currents for the Hall probes and the active circuits. Compensation circuits stabilize the temperature behavior and reduce influence of technology variations. The Active Error Compensation rejects offsets in signal stages and the influence of mechanical stress to the Hall probes caused by molding and soldering processes and other thermal stresses in the package. This chopper technique together with the threshold generator and the comparator ensures high accurate magnetic switching thresholds. **Maximum Ratings** # 2.3 Application Circuit It is recommended to use a series resistor R_S with 200Ω and a capacitor of C_S = 4.7nF for protection against overvoltage and transients on the supply line. Pull-up resistors R_L are required for the output pins Q_1 and Q_2 . Figure 3 Application Circuit # 3 Maximum Ratings Table 2 Absolute Maximum Ratings $T_{\rm i}$ = -40°C to 150°C | Parameter | Symbol | Limit Values | | Unit | Conditions | | |--------------------|----------------|--------------|-----------|------|---|--| | | | min. | max. | | | | | Supply voltage | V_{DD} | -18 | 18 | V | | | | | V _S | -18 | 24 | | for 1 h, $R_{\rm S} \ge 200~\Omega$ | | | | V_S | -18 | 26 | | for 5 min, $R_{\rm S} \ge 200 \ \Omega$ | | | Supply current | I_{DD} | -50 | 50 | mA | | | | through protection | | | | | | | | device | | | | | | | | Output voltage | V_{Q} | -0.7 | 18 | V | | | | | | -0.7 | 26 | | for 5 min @ R_L = 1.2 k Ω (pull up resistor) | | | Continuous output | I_{Q} | -50 | 50 | mA | | | | current | | | | | | | | Junction | T_{i} | _ | 155 | °C | for 2000 h (not additive) | | | temperature | 1 | _ | 165 | | for 1000 h (not additive) | | | | | _ | 175 | | for 168 h (not additive) | | | | | _ | 195 | | for 3 x 1 h (additive) | | | Storage | T_{S} | -40 | 150 | °C | | | | temperature | | | | | | | | Magnetic flux | В | _ | unlimited | mT | | | | density | | | | | | | Note: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. **Operating Range** Table 3 ESD Protection 1) | Parameter | Symbol | Limi | Limit Values | | Notes | |-------------|-----------|------|--------------|----|--| | | | min. | max. | | | | ESD voltage | V_{ESD} | _ | ±4 | kV | HBM, R = 1.5 kΩ,
C = 100 pF
T_A = 25°C | ¹⁾ Human Body Model (HBM) tests according to: EOS/ESD Association Standard S5.1-1993 and Mil. Std. 883D method 3015.7 # 4 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4966-3K. All parameters specified in the following sections refer to theses operating conditions unless otherwise mentioned. Table 4 Operating Range | Parameter | Symbol | Limit Values | | | Unit | Conditions | |----------------------|----------------|--------------|------|------|------|--| | | | min. | typ. | max. | | | | Supply voltage | V_{DD} | 2.7 | _ | 18 | V | | | | Vs | _ | _ | 24 | | 1 h with $R_{\rm S} \ge 200 \ \Omega$ | | | V _S | _ | _ | 26 | | for 5 min $R_{\rm S} \ge$ 200 Ω | | Output voltage | V_{Q} | -0.7 | _ | 18 | V | | | Junction temperature | $T_{\rm j}$ | -40 | _ | 150 | °C | | | · | , | _ | _ | 175 | | for 168 h | | Output current | I_{Q} | 0 | _ | 10 | mA | | #### **Electrical and Magnetic Parameters** # 5 Electrical and Magnetic Parameters Product characteristics involve the spread of values guaranteed within the specified voltage and temperature range. Typical characteristics are the median of the production and correspond to $V_D = 12V$ and $T_A = 25$ °C. Table 5 Electrical Characteristics 1) | Parameter | Symbol | Limit Values | | | Unit | Conditions | |---|---------------|--------------|------|------------------|---------------------------|---| | | | min. | typ. | max. | | | | Supply current | I_{DD} | 4 | 5.2 | 7 | mA | V _{DD} = 2.7 V 18 V | | Reverse current | I_{SR} | 0 | 0.2 | 1 | mA | V _{DD} = -18 V | | Output saturation voltage | V_{QSAT} | _ | 0.3 | 0.6 | V | $I_{\rm Q}$ = 10 mA | | Output leakage current | I_{QLEAK} | _ | 0.05 | 10 | μΑ | for $V_{\rm Q}$ = 18 V | | Output fall time | t_{f} | _ | 0.2 | 1 | μS | $R_{\rm L}$ = 1.2 kΩ; $C_{\rm L}$ < 50 pF | | Output rise time | t_{r} | _ | 0.2 | 1 | μS | see: Figure 4 on Page 11 | | Chopper frequency | $f_{\rm OSC}$ | _ | 320 | _ | kHz | | | Switching frequency | $f_{\sf SW}$ | 0 | _ | 15 ²⁾ | kHz | | | Delay time 3) | $t_{\sf d}$ | _ | 13 | _ | μS | | | Count Signal Delay | $t_{\sf dc}$ | 50 | 200 | 1000 | ns | see: Figure 5 on Page 12 | | Output jitter ⁴⁾ | t_{QJ} | _ | 1 | _ | μ s _{RMS} | Typ. value for square wave signal 1 kHz | | Repeatability of magnetic thresholds 5) | B_{REP} | _ | 40 | _ | μT_{RMS} | Typ. value for $\Delta B/\Delta t$ > 12 mT/ms | | Power-on time 6) | t_{PON} | _ | 13 | _ | μS | $V_{\rm DD} \ge 2.7 \text{ V}$ | | Distance of hall plates | d_{HALL} | _ | 1.45 | _ | mm | | | Thermal resistance 7) | R_{thJA} | _ | 100 | _ | K/W | PG-TSOP-6-6-5 | - 1) over operating range, unless otherwise specified. Typical values correspond to $V_{\rm DD}$ = 12 V and $T_{\rm A}$ = 25°C - 2) To operate the sensor at the max. switching frequency, the magnetic signal amplitude must be 1.4 times higher than for static fields. This is due to the -3 dB corner frequency of the low pass filter in the signal path. - 3) Systematic delay between magnetic threshold reached and output switching - 4) Jitter is the unpredictable deviation of the output switching delay - 5) B_{REP} is equivalent to the noise constant - 6) Time from applying $V_{\rm DD} \ge$ 2.7 V to the sensor until the output state is valid - 7) Thermal resistance from junction to ambient #### Calculation of the ambient temperature (PG-TSOP-6-6-5 example) e.g. for $V_{\rm DD}$ = 12.0 V, $I_{\rm DDtyp}$ = 5.5 mA, $V_{\rm QSATtyp}$ = 0.3 V and 2 x $I_{\rm Q}$ = 10 mA : Power Dissipation: $P_{\rm DIS}$ = 72.0 mW. In $T_{\rm A}$ = $T_{\rm j}$ – $(R_{\rm thJA} \times P_{\rm DIS})$ = 175°C – (100 K / W × 0.072 W) Resulting max. ambient temperature: $T_{\rm A}$ = 167.8°C #### **Timing Diagrams for the Speed and Direction Output** Table 6 Magnetic Characteristics 1). | Parameter | Symbol | Li | mit Val | nit Values | | Conditions | | |---|-------------|------|---------|------------|--------|--|--| | | | min. | typ. r | max. | | | | | Operate point | B_{OP} | 8.0 | 2.5 | 4.2 | mT | | | | Release point | B_{RP} | -4.2 | -2.5 | -0.8 | mT | | | | Hysteresis | B_{HYS} | 3.7 | 5.0 | 6.3 | mT | | | | Magnetic matching | B_{MATCH} | -2.0 | | 2.0 | mT | Valid for T_A = 25°C B_{OP1} - B_{OP2} and B_{RP1} - B_{RP2} | | | Temperature compensation of magnetic thresholds | TC | _ | -350 | _ | ppm/°C | | | ¹⁾ over operating range, unless otherwise specified. Typical values correspond to $V_{\rm DD}$ = 12 V and T_A = 25C #### **Field Direction Definition** Positive magnetic fields related with south pole of the magnet to the branded side of package. # 6 Timing Diagrams for the Speed and Direction Output Figure 4 Timing Definition of the Speed Signal #### **Timing Diagrams for the Speed and Direction Output** Figure 5 Timing Definition of the direction signal Figure 6 Definition of the direction signal | Rotation direction | State of direction output Q1 | | | |--------------------|------------------------------|--|--| | Left to right | Low | | | | Right to Left | High | | | **Package Information** # 7 Package Information ## 7.1 Package Marking Figure 7 Marking PG-TSOP-6-6-5 ### 7.2 Distance between Chip and Package Surface Figure 8 Distance Chip to Upper Side of IC ## 7.3 Package Outlines Figure 9 PG-TSOP-6-6-5 (Plastic Thin Small Outline Package) **Package Information** # PCB Footprint for PG-TSOP-6-6-5 The following picture shows a recommendation for the PCB layout. Figure 10 Footprint PG-TSOP-6-6-5 www.infineon.com Published by Infineon Technologies AG